最新平行四边形的面积教学反思(必备十八篇)。
身为一名优秀的人民教师,我们要有一流的课堂教学能力,借助教学反思我们可以拓展自己的教学方式,那么大家知道正规的教学反思怎么写吗?下面是小编为大家整理的《平行四边形的面积》教学反思,仅供参考,欢迎大家阅读。
平行四边形的面积教学反思 篇1
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。” 《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积;通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。具体概括为以下几点:
一、注重数学思想方法的渗透
在教学设计方面,教师先是让学生计算不规则图形的面积,引导学生把不规则图形转化为学过的图形,进而计算出它的'面积。这样就为这节课运用转化的思想学数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,教师设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。
在此,教师特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、注重了师生互动、生生互动
新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。
平行四边形的面积教学反思 篇2
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”在《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。现就上课时和课后的感受谈几点体会:1.注重数学专业思想方法的渗透
在数学教学中,要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。我在这节课中,先让学生回忆长方形的面积是怎样求的?正方形的呢?引出你能求平行四边形的面积吗?做到用“旧知”引“新知”,把“旧知”迁移到“新知,有利于有能力的同学向转化的方法靠拢。重视转化思想的渗透,通过自主探究和合作学习解决实际问题。通过把不熟悉的图形转化成我们熟悉的图形来计算它的面积,这在数学学习中是一种好的方法。让学生进一步理解转化思想的好处。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。我有意识的引导学生多种方法剪拼,想突破平行四边形高有无数条,拼法也有无数种,可是没有达到预想的效果。在充分动手操作的基础上采用小组合作的方法比较平行四边形和长方形长和宽的关系,推导出平行四边形面积的计算公式。
2﹑本节课的教学重点是掌握平行四边形的.面积计算公式,并能正确运用公式解决实际生活问题。教学难点是把平行四边形转化已学过的基本图形,通过找关系推导出平行四边形的面积公式。所以我在本课设计了让学生自己动手剪,移,拼,把平行四边形转化成一个长方形,接着小组合作完成推到过程:长方形的面积与原平行四边形的面积相等,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。学生通过亲自动手实践,实现新旧图形的转化,有利于学生主动构建新的认知结构,使知识的掌握更长久、牢固。同时在动手操作的过程中,学生的主体地位得到确立,边操作边思考,边观察边寻思,从中有所觉。
3.分层练习,突破重点难点
巩固练习阶段是帮助学生掌握新知,形成技能、发展智力、培养能力的重要手段。心理实验证明:学生经过近三十分钟的紧张学习之后,注意力已经度过了最佳时期。此时,学生易疲劳,学习兴趣容易降低,差生的表现尤为明显。为了保持较好的学习状态,提高学生的练习兴趣,我除了注意练习的目的性、典型性、层次性和针对性以外,还特别注意在巩固新知识的基础上进行加强练习。选择合适的底和高计算面积、已知面积求高(逆向思维训练)、等底等高图形面积计算。
在学生初步掌握平行四边形面积计算公式的基础上,又设计了一组选择练习,使学生进一步明确,要求平行四边形的面积,不仅要知道底和高两个条件,而且底和高必须对应。这样,既体现了知识的有序性,又保证了重点,分散难点,便于学生理解与掌握,从而达到学习目标的全面落实。学生兴趣浓厚,攻克一个个难关,意犹未尽。,学生练习中错误率低,取得了满意的效果。时间把握得不够,最后两道有针对性的练习没有得到训练,从而没有很好的达到巩固新知的作用。
4.我的遗憾
本节课还有一些不足之处。比如在进行把平行四边形转化为长方形时,让学生理解长方形的长、宽分别和平行四边形的底和高相等是学生推导平行四边形公式的关键,其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等,而我只强调了拼后的面积相等这个概念,为什么面积相等?这个关键的问题我却没有追问,本来准备好的演示粘贴过程,由于担心时间不够也省了。忽视了学生在动手操作中,即将探究出的知识薄而未发,这样就使得学生的操作只停留到了表面,而没有在操作的过程深层次经历知识的形成过程,正因为在这个关键问题上疏忽,导致了,学生对平行四边形面积推导过程茫然的情况。其次,学生在剪拼时,只注重结果,没有适时归纳过程。让学生理解只要沿着平行四边形的一条高剪下,都可以拼成一长方形。这一环节处理层次不够清晰,导致时间过长。
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善。自己觉得在引导和组织学生上欠缺一些,在引导学生把平行四边形“转化”成长方形的操作活动中,没有把学生的积极性调动起来,有些学生的操作活动没有很有效进行,导致那里的教学时间过于长。
教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
平行四边形的面积教学反思 篇3
《平行四边形面积》的教学目标是经过操作活动,经理推导平行四边形的面积计算公式的过程,能运用平行四边形面积公式计算相关图形的面积并解决一些实际的问题。
教材是直接出示一块平行四边形的空地,要求计算面积,这样安排的目的是让学生应对一个新的问题,思考如何解决新问题。教材这样的安排对学生来讲,供给了很好培养学生独自思考本事的素材,但对学生的要求较高,鉴于本班的学生情景,可能有一部分中下层生没能参与其中,于是我灵活地进行了基于本班实际情景的教学设计,我是这样设计的:
1、先出示两个不规则图形,要求学生说出面积。这两个不规则图形学生在前面的课里已经学习过,能够经过数格子的方法去计算面积,也能够转化为规则图形去计算的,课堂上不少学生就是用转化的方法去解决的,这就为新课埋下伏笔。
2、上一环节不规则图形转化后为正方形和长方形,那里就复习下正方形和长方形面积公式。
3、比较等底等高的平行四边形和长方形面积谁大?经过图形出示。学生讨论得出结论:能够把平行四边形转化成长方形,这样就能够用底X高得出面积。
4、补充其他转化策略,明确平行四边形面积=底X高。
5、练习巩固。
先出示不规则图形让学生想到转化为熟悉的规则图形进行计算面积,就是课堂里要求掌握的转化思想,有了课始的铺垫,后面的探索活动是顺理成章的,其中的道理学生也是清楚的,包括中下层生也能掌握,改变了以往直接出示公式,让学生套公式进行计算来得科学贴合学习规律。
平行四边形的面积教学反思 篇4
平行四边形面积的计算是在学生学习了长方形的面积和平行四边形认识的基础上教学的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所有平行四边形面积公式的推导,是本节课的重点。教学中通过把一个可拉动长方形铁框拉成一个平行四边形,使学生看到长方形和平行四边形之间的内在联系,为后面学习新知识打下基础。新课突出了三个环节,一是引导学生初步探究,通过提出一个客观的实际问题,如果有一块很大很大的平行四边形草地,还能用数方格的方法计算它的面积吗?小组讨论。用问题激起学生再次探究,可以把要探究的平行四边形转化成我们学过的什么图形呢?二通过学生实际操作,用不同方法把平行四边形转化成长方形,并通过操作,观察,找出平行四边形与所拼的长方形的内在联系,在此基础上,推导出平行四边形的面积计算公式。三是引导学生会用公式正确计算平行四边形面积,解决实际问题,在练习中,一定要做到一练一小结,提醒学生要注意的问题。
平行四边形的面积公式是几何图形面积计算第一次运用“转化”思想方法推导得出的。因此,本节课让学生形象直观地明白什么是“转化”,深刻理解“转化”的本质,就显得尤为重要。对于“转化”思想,本节课不在是渗透的朦朦胧胧,而是把这种学习方法明朗化,让“转化”本领成为学生思维的“主角”,并当作学习的一个重点让学生掌握。我首先出示三个图形让学生通过比较,在直观的基础上,利用图形的转化,直接说出了它们的面积,渗透了转化的数学思想方法。这样,学生面对“计算平行四边形面积”这一新问题,就很自然地得到了两种猜想:用平行四边形相邻两边相乘(以前学习的长方形面积计算公式等知识的负迁移)和用平行四边形的底乘以高(转化思想方法的运用)。进而,教师提出问题:同一个平行四边形的面积怎么会有两个答案呢?激发学生进一步去探究。迫使学生动脑筋想办法,用割补方法进行问题转化,验证了用“底乘高”的猜测是正确的,通过观察图形的动态变化,从比较中发现用“相邻两边相乘”是错误的。学生在这一实践活动过程中获得割补转化的数学思想方法。在练习阶段的'“你会求阴影部分的面积吗?”,不仅是巩固新知,而是将“转化”本领内化成解题技巧。
这节课,采用先让学生“大胆猜测”,再进行“小心求证”的教学思路,教师有意识地把经历“猜想与验证”蕴涵在探究平行四边形面积公式的数学活动中。当学生对平行四边形的面积计算获得两个合理的猜想后,教师不做否定,而是要求学生对自己的想法进行检验,学生通过思维顿悟、教师的直观演示,自己发现错误的原因,这不但让学生对知识理解更透彻,影响更深刻,而且给学生学生探究发现知识的方法指导。这样的过程,既不同于由一般到特殊的演绎过程,也有别于由具体到一般的归纳过程。它是一种发现并填补认知的空隙,即定向探索解决问题的研究过程,这符合数学知识发现的一般规律,因而具有比较一般的方法论意义。这样的数学思维方法的运用,有效地训练了学生综合运用思维方法获取知识的能力,同时也受到了科学思想方法的启蒙。
平行四边形的面积教学反思 篇5
由于暑假在家,我就备了这一课。所以一开始我的教学目标还是很明确的:
①借助学生已有的经验和方格图,让学生初步感知平行四边形的面积可能与它的底和对应高有关,再通过剪、拼进一步确定平行四边形的面积计算公式,并能根据公式正确计算平行四边形的面积。
②在操作、观察、比较的过程中,渗透转化的思想, 发展学生的空间观念,使学生获得探索图形内容的基本方法和基本经验。
开始,先复习长方形面积的计算方法和长方形公式的由来,让学生实现知识的迁移。本课的重点就在于将平行四边形转化成长方形,进而推导出平行四边形面积的计算公式。在比较长方形和平行四边形两个图形这一教学环节中,给足学生数方格的时间,突出怎样去数方格(先数满格,不满一格的视为半格,为什么?)为以后学习不规则图形面积埋下伏笔。还有一种数法,将图形的沿高切下,平移,使学生发现多出的三角形与缺的三角形大小相等,如果剪下来平移到缺的地方可以转化成长方形,有了这样的感悟,然后放手让学生将自己准备的平行四边形通过剪拼转化成长方形,这样将操作、理解、表述有机地结合起来,学生有非常直观的“转化”感受。将平行四边形转化成学生学过的长方形来计算它们的'面积,这时进行适时的小结:探索图形的面积公式,我们可以把没学过的图形转化为已经学的图形来研究。学生比较容易掌握把新的、陌生的问题转化成学生相对熟悉的问题的方法。我们可以将数学方法传递给学生,这样有利于学生主动探索解决问题的方法,体会解决问题的策略,提高数学的应用意识。
平行四边形的面积教学反思 篇6
《平行四边形的面积》一课是多边形面积的起始课,是后续三角形面积、梯形面积的基础。本课是在学生学习过长方形面积的基础上学习的,由于学生有了长方形面积的计算基础,只要学生能找到利用割补法把平行四边形转化成长方形的方法,这节课的重点就突破了。本节课我利用让学生比较两张纸片的'大小,引出平行四边形面积的计算,让学生探究平行四边形面积的计算方法。
在以往的教学过程中,很多学生会出现“底×邻边”的错误做法,所以在教学设计时,我把这种情况进行了预设,但是在课堂上全班学生没有一个学生这么回答。由于担心学生在以后的练习中会出现类似错误,同时为了让学生明白不能用“底×邻边”的错误做法,在课堂上我主动提问学生为什么要用“底×高”而不能用“底×邻边”的方法呢?通过利用平行四边形框架进行演示,让学生明白,在平行四边形框架拉伸的过程中,底和邻边的长度没有变,但是平行四边形的面积在逐渐缩小。说明平行四边形的面积和底、邻边的长度没有关系。
为了让学生明白计算平行四边形的面积时底和高的对应关系,我设计了三个动手操作的环节。首先给学生出示一个底是5厘米、高是3厘米高的平行四边形,让学生思考,看到这个平行四边形你想到了什么图形?学生很容易就想到了长是5厘米,宽是3厘米的长方形。第二次给学生出示一个底为7.5厘米,高为4厘米,另一条邻边的高是6厘米,再让学生思考并动手操作这个平行四边形可以转化成什么样长方形,大部分学生直接说出是长是7.5厘米,宽是4厘米的长方形。有几个同学说可以沿着6厘米的高剪下来,也可以拼成长方形,只能说出长是6厘米,但不知道宽是多少。让学生明白不可能剪出长是7.5厘米,宽是6厘米的长方形。第三次给学生出示一个底是30厘米,高是15厘米,另一组边是18厘米,高是25厘米的平行四边形。学生分别想出了剪成长30厘米,宽是15厘米和长是25厘米,宽是18厘米的长方形。通过这三个环节,让学生明白计算平行四边形的面积时必需是底和高是对应关系,不能随便计算。
本节课的不足之处是,在课堂上自己说的太多,让学生思考回答的少,学生回答时还总是怕学生说不好,帮助学生说,在以后的教学中要多放手,学会耐心等待,学生的能力得到锻炼了,学生的积极性也会大大提高的。
平行四边形的面积教学反思 篇7
本节课我主要采用自主探究、合作交流的方式进行,根据学生的预习,先说一说自己有质疑的、不会的问题,以及自己不同的见解、看法和重点等。接着让学生在展示台上演示自己的操作过程。教师追问,引发学生思考,学生评价,当堂检测,充分尊重了学生的主体地位,突破难点,解决了关键,发展了学生能力,很好地完成了学习目标。
在创设情境,设疑引入环节中,学生现有知识水平中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的欲望,感受数学与生活的密切联系。
在操作探索,获取新知环节,我主要让学生亲身经历用数、移、拼等操作方法在自主、合作的积极学习氛围中推导出平行四边形的面积公式,学会“转化”的方法。同时使学生明白学会一种解题方法比做十道题都重要,教会学生不仅要“学会”,而且要“会学”。充分尊重了学生的主题地位,突破了难点,解决了关键,发展了学生能力。
在练习环节,练习题量虽然不大,但内涵盖了本节课要讲的所有知识点,具有一定的弹性,使不同的学生得到了不同程度的发展,从而进一步内化了新知。同时,在成功的喜悦中,使他们体会到,数学就存在于我们身边,只要细心观察,认真思考,都可以找到数学方面问题。
回顾本节教学,我也感到了不足之处,比如:
应该让学生更多的表达,更清楚的表述,教师应该是一个快乐的倾听者。而我在课堂上虽想到了这一点,还是急于归纳概括学生的结论,应让学生再说的充分些,让每个学生有更深刻的理解的`基础上,站在更高的角度去归纳,更深更全面的去概括。
学生明白但表述不清楚,就是因为被圈在了教师给的固定模式里,因此我觉得今后在常态教学中更应注重学生个体表达,并且不必一定按照教师给的固定模式,应该允许学生用自己的方式、用自己的语言来述说解题思路帮助分析问题。不仅要求学生在课堂上大胆地说,而且还要求学生与同学互相交流着述说,这样让学生充分展示自己的思考过程,并用流利的语言来叙述给同学听,在这样的过程中才能不仅能及时发现问题,及时查漏补差。
平行四边形的面积教学反思 篇8
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,要让学生通过自己的活动去获取知识。在《平行四边形的面积》这一课的教学中,我充分调动学生的学习积极性,让学生动手实践,自主探究,让学生经历了知识的形成过程。反思这节课,我总结了以下几点:
一、注重数学思想方法的渗透
我们在教学中一贯强调,“授人以鱼,不如授人以渔”,在数学教学中,就是要注重数学专业思想方法的渗透。数学专业思想方法即解决数学具体问题时所采用的方式、途径、手段,它是学习数学知识、运用数学知识解决实际问题的具体行为。在数学教学中,要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。在这节课中我先利用求不规则图形的面积向学生渗透转化的思想,从而引出用转化的方法求平行四边形面积的计算方法。在整个探究过程中,“转化”的方法为学生提供了解决问题的途径,学生通过把新知“求平行四边形的面积”转化为旧知“求长方形的面积”,从而达到解决问题的目的。这一方法在数学学习中,具有普遍应用的意义,同时它也是求其他图形面积的重要方法。
二、注重学生自主探索和合作学习
动手实践,自主探索与合作交流是学生学习数学的重要方式。因为学习任何知识的最佳途径是通过自己的实践活动去发现,这样发现理解最深,也最容易掌握。学生学习数学知识是主动建构过程,也就是说,学生学习数学只有通过自身的操作活动和主动参与的去做才能产生效果。现代教育理论主张让学生动手去“做”科学,而不是用耳朵“听”科学。本节课我放手让学生从自己的思维实际出发,让学生在独立思考的基础上进行合作交流,这样既能满足学生展示自我的心理需要,又使学生敢想、敢说、敢做、敢真实地表现自己,让学生的潜能和主体作用得以充分发挥。同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。
三、注重了学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的'面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?接着,充分运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形转化为长方形的过程,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调平行四边形底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
四、注重练习的优化设计
练习是课堂教学中的重要环节之一,是巩固知识、运用知识、训练技能技巧的必要手段,是检查教学效果的有效途径。因此,练习设计必须紧扣教学内容和目标,必须注意基础性、针对性、应用性,练习的形式应具有趣味性、层次性、开放性,从而达到有效的练习。本课教学过程中,我注重练习设计,做到学练结合,体现出以下几点:一是抓住重点,练习注意基础性和针对性。第一题告诉学生底和高,直接求平行四边形面积,检验学生是否达到运用公式,解决实际问题。第二题出示含有多余条件的图形题,强调底和高必须对应,让学习上更高一个层次。二是动手操作,练习应注意实践性与应用性。第三题出示把一个长方形的木条框拉住它的两个对角,使它变成一个平行四边形,发现周长和面积有什么变化?三是循序渐进,练习注意层次性。在这个练习的设计中,把练习设计的有层次,由易到难,不能一下子就出现很难的题目,否则把学生难倒了,从而也检测不到本节课的教学效果。四是训练思维,练习注意开放性。设计练习时,有意识地设计一些能开拓学生思路的开放题。第四题比较同底等高的平行四边形的面积,意在提升学生对平行四边形特征的认识和加深对面积计算公式的理解。
总之,本节课为学生创设民主、和谐、宽松、愉悦的学习氛围,使教学过程成为一个不断创设问题情境和探索解决问题的过程,在学生活动的过程中为学生提供充分的活动条件和活动空间,使学生的数学学习成了一个不断感受、体验、探索、交流和应用数学的过程。当然在课堂上也出现了很多不足的地方,但只要我用心去思考,不断反思,相信自己能在不断的自我反思中成长,在不断的自我实践中发展,在不断的自我成长中创新。
平行四边形的面积教学反思 篇9
平行四边形面积的计算是在学生学习了长方形的面积和平行四边形认识的基础上教学的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所有平行四边形面积公式的推导,是本节课的重点,整个教学过程由复习准备导入新课,进行新课,巩固练习,课堂小结几个环节组成,在复习中,教师先让学生回答平行四边形的底和高各是多少,以唤起学生对平行四边形认识的回忆,在通过把一个可拉动长方形铁框拉成一个平行四边形,使学生看到长方形和平行四边形之间的内在联系,为后面学习新知识打下基础。新课突出了三个环节,一是引导学生初步探究,通过提出一个客观的实际问题,如果有一块很大很大的平行四边形草地,还能用数方格的方法计算它的面积吗?小组讨论。用问题激起学生再次探究,可以把要探究的`平行四边形转化成我们学过的什么图形呢?二通过学生实际操作,用不同方法把平行四边形转化成长方形,并通过操作,观察,找出平行四边形与所拼的长方形的内在联系,在此基础上,推导出平行四边形的面积计算公式。三是引导学生会用公式正确计算平行四边形面积,解决实际问题,在练习中,一定要做到一练一小结,提醒学生要注意的问题。
在拓展练习中,为了提高学生的判断能力,让学生主动去寻找计算面积所必需的条件,并根据条件正确地求平行四边形的面积,效果还不错,整节课充分体现了新课标的精神。
这节课也有几个地方联系不够紧密,新课转折不够严密,练习强化不够具体,操作时间不够充分。
如果今后再上这节课,要注意练习的多样性,要注意语言表达严谨性,还要加强动手操作的训练,如让学生计算一些没有直接告诉底和高或近似平行四边形要求它的面积,让学生去量出需要的条件,有利于培养学生的综合运用知识和解决问题的能力。
平行四边形的面积教学反思 篇10
平行四边形的面积,是教师相当熟悉的一堂课,我曾多次听这课,发现平行四边形的面积教学存在三种状态:第一种状态,教师认为学生学习数学就是要掌握知识,所以教学注重对学习“平行四边形面积”的知识铺垫,仅仅关注学生对平行四边形面积计算方法的识记与演练,掌握;只要结果,不要过程。第二种状态,教师开始重视学生获得知识的过程,但重视过程是为了更快地接受知识、更好地理解知识,却忽视了过程本身的价值。第三种状态,希望学生不仅获得平行四边形面积计算公式的知识,而且能获得数学思想和方法;不仅能够正确地应用公式,而且能更好地理解这一公式的来源。在学习中,展示探求平行四边形面积计算方法的真实思维过程,凸显“重知识更重方法,重结果更重过程”的价值追求。我一直在苦苦追求着第三种状态,因此在课前、课中我一直思考以下四个问题:
1、数学学习,除了关注知识的传承,还应关注什么?
2、怎样从学生的角度出发设计教学?
3、怎样让数学课堂变得厚重?除了显性课程外,学生还能获得哪些方面的发展(隐性课程)?
一节厚重的数学课,总是能够让人看到学生数学素养的提升。
一节厚重的数学课,总是能够让人看到学生数学地思考问题。学生有潜力,并非这个孩子考试的分数高,而是这个孩子的后劲足。这些后劲足的孩子思维活跃,往往能在复杂的信息中抓住关键点,能透过复杂的现象抓住数学的本质。也就是,这些孩子会数学地思考问题。
4、如何优化课堂结构?
基于以上四个问题的思考,我把“有益的思考方法和应有的思维习惯”放在本节课教学的首位。在数学教学中如何以数学知识为载体,培养学生有益的思考方式和思想方法。我在设计与执教“平行四边形的面积”一课中获得一些启示。
一、以数学知识教学为载体,渗透“转化”的数学思想方法,发展学生主动获取知识的能力。
“转化”法是开展数学研究、解决数学问题常用的方法,在小学数学教学中起着十分重要的作用。小学阶段的几何形体面积、体积计算公式都是运用“转化”法推导的。平行四边形的面积公式是几何图形面积计算第一次运用“转化”思想方法推导得出的。因此,本节课让学生形象直观地明白什么是“转化”,深刻理解“转化”的'本质,就显得尤为重要。对于“转化”思想,本节课不在是渗透的朦朦胧胧,而是把这种学习方法明朗化,让“转化”本领成为学生思维的“主角”,并当作学习的一个重点让学生掌握。
教师首先出示三个图形让学生通过比较,在直观的基础上,利用图形的转化,直接说出了它们的面积,渗透了转化的数学思想方法。这样,学生面对“计算平行四边形面积”这一新问题,就很自然地得到了两种猜想:用平行四边形相邻两边相乘(以前学习的长方形面积计算公式等知识的负迁移)和用平行四边形的底乘以高(转化思想方法的运用)。进而,教师提出问题:同一个平行四边形的面积怎么会有两个答案呢?
激发学生进一步去探究。迫使学生动脑筋想办法,用割补方法进行问题转化,验证了用“底乘高”的猜测是正确的,通过观察图形的动态变化,从比较中发现用“相邻两边相乘”是错误的。学生在这一实践活动过程中获得割补转化的数学思想方法。在练习阶段的“你会求阴影部分的面积吗?”,不仅是巩固新知,而是将“转化”本领内化成解题技巧。在课堂小结时,我不满足于学生的认识仅仅在对具体知识的获得上,而是启发学生提炼出数学的思想方法。教师最后的评价,既给学生以鼓励,更给学生以导向,导向在数学的思想方法上。因为数学的思想方法是数学的灵魂,学生拥有了它,其主动获取知识的能力将会得到提高,创造力的发展就有了基础。
二、以探索解决问题为主线,运用“大胆猜想,小心求证”的数学学习方法,培养学生探索精神和探究能力。
现代科学的探索活动,常常是人们在已有的科学知识的基础上,发挥人的主观能动性,通过想象、直觉等多种思维方法,提出猜想性假说,建立起新的概念和理论框架,推出具体结论,最后通过实验予以验证。这种“猜想—验证”的方法已成为科学探索中常用的方法。
这节课,采用先让学生“大胆猜测”,再进行“小心求证”的教学思路,教师有意识地把经历“猜想与验证”蕴涵在探究平行四边形面积公式的数学活动中。当学生对平行四边形的面积计算获得两个合理的猜想后,教师不做否定,而是要求学生对自己的想法进行检验,学生通过思维顿悟、教师的直观演示,自己发现错误的原因,这不但让学生对知识理解更透彻,影响更深刻,而且给学生学生探究发现知识的方法指导。
这样的过程,既不同于由一般到特殊的演绎过程,也有别于由具体到一般的归纳过程。它是一种发现并填补认知的空隙,即定向探索解决问题的研究过程,这符合数学知识发现的一般规律,因而具有比较一般的方法论意义。这样的数学思维方法的运用,有效地训练了学生综合运用思维方法获取知识的能力,同时也受到了科学思想方法的启蒙。
平行四边形的面积教学反思 篇11
《平行四边形的面积》是人教版五年级上册第五单元《多边形的面积》第一课时的教学内容。本节课是学生掌握并运用“转化”思想的关键,更是学生进一步探究其它平面图形面积计算的基础。课前,我带着如何有效实践“图形与几何”领域的新课标理念,如何更好地让学生获得基本活动经验,形成基本数学思想等问题,反复研读课标,揣摩教材,力求让学生在学习中不仅能够获得平行四边形面积计算公式的知识,而且能够体会和运用数学思想和方法,不仅能够正确地应用公式,而且能更好地理解这一公式的来源,力争在教学中,展示探究平行四边形面积计算方法的真实思维过程,凸显“重知识更重方法,重结果更重过程”的价值追求。以下是我在设计与执教“平行四边形的面积”一课中获得的一些启示,可能还不够成熟,可能还存在这样那样的问题,真诚地希望您能够提出宝贵意见。
一、注重 “转化”思想的渗透。
在数学教学中,要注重数学思想方法的渗透,要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。平行四边形的面积计算公式是几何图形面积计算第一次运用“转化”的思想方法推导得出的,这无疑增加了学生学习的难度。本节课的教学,长方形的面积计算是平行四边形面积计算的生长点,是认知前提,所以新课伊始,我首先复习长方形的面积计算公式,并通过计算不规则多边形的面积,引导学生初步体会运用剪、移、拼的方法把不熟悉的未知图形转化成我们熟悉的已知图形来计算它的面积,渗透“等积变形”,实现用“旧知”引“新知”,把“旧知”迁移到“新知”的教学预设,让学生对“转化”有所熟悉,不再陌生。同时,在潜移默化中,引导学生明确转化是一种很好的数学学习的方法,为学生进一步理解转化思想奠定基础。
在探究平行四边形的面积计算公式的教学环节中,我首先让学生通过数方格的方法分别求出平行四边形和长方形的面积,然后观察表格中的数据,感知平行四边形与长方形的内在联系,当发现用数方格的方法计算实际生活中图形的面积不太适宜时,引导学生大胆猜测平行四边形的面积计算公式,并运用“转化”的方法将平行四边形转化成长方形,从而验证猜测,推导出公式,也让学生更深刻地理解了转化的本质。
二、注重学生数学思维的发展。
数学教学的核心是促进学生思维的发展。在这节课中,我设计了求不规则多边形的面积、运用剪一剪、拼一拼的方法进行图形转化等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的'面积有什么关系?长方形的长和宽与原平行四边形底和高有什么关系?充分利用多种媒体形象、直观的教学辅助作用,使学生在动手操作,交流研讨中得出结论。同时引导学生发现底与高的一一对应关系。在一系列的教学活动中,学生通过观察、交流、讨论、练习等形式,在理解公式推导的过程中学会解决问题,在亲自尝试,亲身体验中掌握了平行四边形面积公式的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、注重培养学生的问题意识。
问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,在教学中,为了引导学生进行自主探究,我设计了这样一系列问题:“请你猜测平行四边形面积的计算公式?为了验证猜测,你想把平行四边形转化成我们学过的哪个已知图形?怎样转化呢?”这些问题的指向不在于公式本身,而在于探究公式的来源,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、猜想,并进行实践。当学生运用割补平移的方法将平行四边形成功地转化成长方形后,我又及时出示问题,引导学生在小组内讨论原平行四边形与转化后的长方形之间的关系,从而达到公式推导的目的。学生在独立思考、动手操作、相互交流、相互评价的过程中,增强发现问题、提出问题、分析问题和解决问题的意识和能力。
四、注重学生学习方式的多样化。
动手实践,自主探索与合作交流是学生学习数学的重要方式。教学中,我为学生创设了民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,充分地调动了学生的学习主动性。让每一个学生亲自动手操作,边操作边观察边思考,在自主探究与合作交流过程中,经历知识的形成。课堂上,学生们乐想、善思、敢说,他们自由地思考、猜想、实践、推理、验证……
教学是一门有着缺憾的艺术。作为教者的我们,往往在执教后,都会留下或多或少的遗憾,但只要我们用心思考,不断改进,我们的课堂就会更加精彩。
平行四边形的面积教学反思 篇12
《平行四边形面积》的教学目标是通过操作活动,经理推导平行四边形的面积计算公式的过程,能运用平行四边形面积公式计算相关图形的面积并解决一些实际的问题。
教材是直接出示一块平行四边形的空地,要求计算面积,这样安排的目的是让学生面对一个新的问题,思考如何解决新问题。教材这样的安排对学生来讲,提供了很好培养学生独自思考能力的素材,但对学生的要求较高,鉴于本班的学生情况,可能有一部分中下层生没能参与其中,于是我灵活地进行了基于本班实际情况的教学设计,我是这样设计的:
1、先出示两个不规则图形,要求学生说出面积。这两个不规则图形学生在前面的课里已经学习过,可以通过数格子的方法去计算面积,也可以转化为规则图形去计算的,课堂上不少学生就是用转化的方法去解决的,这就为新课埋下伏笔。
2、上一环节不规则图形转化后为正方形和长方形,这里就复习下正方形和长方形面积公式。
3、比较等底等高的'平行四边形和长方形面积谁大?通过图形出示。学生讨论得出结论:可以把平行四边形转化成长方形,这样就可以用底X高得出面积。
4、补充其他转化策略,明确平行四边形面积=底X高。
5、练习巩固。
先出示不规则图形让学生想到转化为熟悉的规则图形进行计算面积,就是课堂里要求掌握的“转化思想”,有了课始的铺垫,后面的探索活动是顺理成章的,其中的道理学生也是清楚的,包括中下层生也能掌握,改变了以往直接出示公式,让学生套公式进行计算来得科学符合学习规律。
平行四边形的面积教学反思 篇13
人们常说,课堂教学始终都是一门缺憾的艺术。
一、主要的成功之处:
这节课主要采用了自主合作探究的学习方法,让学生观察、猜测,通过动手操作验证。整个教学思路清晰,重点突出,利用多媒体课件突破难点,收到了良好的效果。
二、不足之处:
在新课前没有复习平行四边形的底和高。因此,在操作各推导过程中学生对这两个概念显得很生疏,很多学生在画平行四边形底和高时出错,影响了教学进度和教学效果。
三、质疑:
用数方格的`方法计算平行四边形的面积时,教材在这里安排了一个长方形和一个平行四边形的面积,让学生填表后对它们进行比较,这里暗示了两个图形之间的联系。让学生用数方格的方法计算平行四边形的面积,然后在格里填出平行四边形的底和高与长方形的长和宽相比的内容,删去了长方形的部分,只留下一个平行四边形,不知这样处理是否合适。教学随想。
平行四边形的面积教学反思 篇14
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。我设立的教学目标是
(1)使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积;
(2)通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、注重数学思想方法的渗透
在教学设计方面,我先是让学生大胆猜测两块香蕉地(等底等高的长方形与平行四边形)的面积哪一个大,再让学生通过动手操作、验证平行四边形的面积,其实它们的面积是一样大的。
二、注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、注重了师生互动、生生互动
新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。
四、我的遗憾
课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出第一种,后两种学生没拼出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第二、三种剪法。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
平行四边形的面积教学反思 篇15
这节课我们所学习的的内容主要是平行四边形面积的计算。是在学生以前学过的长方形的面积和平行四边形认识的基础上学习的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所以平行四边形面积公式的推导,是本节课的重点。这节课的教学我们不但要让学生学会平行四边形面积计算公式的知识,而且能获得数学思想和方法;不仅能够正确地应用公式,而且能更好地理解这一公式的来源。
一、课程开始,我先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的?
平行四边形的面积怎么求呢?猜想平行四边形与长方形是否存在联系。引导学生用“转化”的方法思考。
二、注重学生数学思维的发展
-
小麦田(xmt777.com)小编精心推荐:
- 童年的教学反思 | 奇怪的教学反思 | 窗边的雨作文 | 教学反思 | 平行四边形面积教学反思 | 平行四边形面积教学反思
在探究的过程中,我给了学生充足的时间让学生通过剪一剪、拼一拼等学习活动发现平行四边形和长方形的关系。在这个基础上利用学习提纲进行提示:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?让学生在动手操作中发现图形之间的关系,根据它们之间的关系推导出平行四边形的面积。并且让学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。最后利用多媒体课件形象、直观的演示。通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、不足之处
本节课还有一些不足之处。在进行把平行四边形转化为长方形时,让学生利用学习提纲理解长方形的长、宽分别和平行四边形的底和高相等是学生推导平行四边形公式的关键。其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等。而我只强调了拼后的面积相等这个概念,为什么面积相等?这里应该将学生的图形粘在在黑板上,让学生交流出自己的原因。没有往更深的地方挖掘,所以学生的思维只停留只要沿着平行四边形的一条高剪下,都可以拼成一个长方形。而没有在操作的过程深层次经历知识的形成过程。
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善等等。
平行四边形的面积教学反思 篇16
小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会平行四边形、三角形、梯形面积计算的任务。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。
本课关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形等积转化成长方形。
心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。所以,我主要采用了动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。
我让学生动手操作,想办法将平行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,剪拼的方法有好多种,在这时,我及时抛给学生这样一个问题:“为什么要沿高剪开?”引发学生积极开动脑筋思考。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来平行四边形什么变了,什么没变?拼成长方形的长和宽与原来平行四边形的底和高有什么联系?通过上面问题的思考,学生对平行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底,拼成的长方形的宽相当于原来平行四边形的高,平行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。接着我让学生同桌互相说一说整个操作过程,使学生真正理解平行四边形转化成长方形的过程。
对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题:
第一层:基本练习:书本P82第1题
有利于学生加深对图形的认识,正确分清平行四边形底和高的关系。
第二层:综合练习:
1、你能想办法求出下面两个平行四边形的面积吗?要求这两个平行四边形的面积必须先干什么?
让学生自己动手作高,并量出平行四边形的底和高,再计算面积,这个过程也体现了“重实践”这一理念。
2、你会求出这个平行四边形的面积吗?
通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。
第三层:扩展练习:
1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?(图在课件中)
学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的.所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
教学是一门永远有遗憾的艺术,虽然我也很努力地想上好这节课,但在教学中存在着很多问题,以下是我今后需要改进的地方:
数学课不仅要教给学生知识,回顾数学更应该带给孩子数学思想方法,本节课有两个重要的思想,第一、平移的数学思想。在本节课中没有体现出来。第二、本节课最重要的思想方法,“转化”突出的还不够,也就是说学生没有真正体会到这种思想的重要性。
前面的环节太耽误时间,今后要想办法优化,不仅是本节课,所有课都应该这样做,课堂上每一个环节的设置都要围绕核心目标,对核心目标重要性不大的都要舍掉,以保证核心目标在课堂上的黄金时间解决。
通过教学发现,练习设置要根据学生的学习情况和知识的掌握情况进行,不宜拔高,本课应以基本练习巩固为主。
平行四边形的面积教学反思 篇17
教学片断中,学生兴趣盎然,始终以进取的态度、主人翁的姿态投入到每一个环节的学习中。我认为教学成功的关键在于学生是经过自主探究得到了知识,获得了发展。主要体此刻以下几个方面:
(一)创设生活情境,激发探究欲望
小学数学资料来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生进取主动地投入到数学活动中去。回归生活,让课堂与生活紧密相联,是新课程教学的基本特征。因为我们明白,仅有植根于生活世界并为生活世界服务的课堂,才是具有强盛生命力的课堂。所以新课程强调突破学科本位,砍掉学科资料的繁、难、偏、旧,把课堂变成学生探索世界的窗口,学生活中的数学,获得合作的乐趣,生活融入甚至成为课堂教学,课堂教学本身就是生活,经历、体验、探究、感悟,构成了教学目标最为重要的行为动词。
上述教学片断中,教师带领学生进行实地考察,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的资料产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。
(二)重视学生的自主探索和合作学习
动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:在人的心灵深处都有一种根深蒂固的需要,就是期望感到自我是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要异常强烈。上述这个教学片断中,对传统的平行四边形面积的教学方法作了大胆改善,教学中我有意设计了曹冲称象这个同学们都熟悉的故事引入,其用意一方面是激发学生的学习兴趣,另一方面是孕伏了转化的数学思想。为学生解决关键性问题—把平行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的同学想到了把平行四边形转化成已经学过的图形这一方法。之后教师鼓励学生用自已的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,有的同学认为:平行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理。
平行四边形的面积教学反思 篇18
有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上;学生的数学学习内容应该是现实的、有趣的、富有挑战性的;动手实践、自主探索与合作交流,是学生学习的重要方式。这节课中,我在学生想想、剪剪、拼拼等活动中,最大限度地调动学生多种感观,让他们的手、眼、脑等都参与到学习活动中去。让学生有理有据地思维,即达到了“平行四边形面积”的主动构建。调动了学生已有的知识和经验,去解决问题,“创造”知识。使他们将接受知识的过程转变为能动参与过程,成为真正的探索者、发现者、创造者。有利于学生创新意识与实践能力的培养。
主要体现在以下几个方面:
1、本节课充分的利用教材,引导学生去发现教材中隐藏的数学知识,发挥了教材在教学中的主题作用。
2、从生活情境出发,为学生创设探究学习的情景。
在教学中,教师首先让学生观察街区图。让学生看到各种图形都是来源于生活实际,也体会到了计算它们的面积的用处,这就使学生对学习平行四边形面积计算的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。
小学数学内容来源于生活实际。只有植根于生活世界并为生活世界服务的'课堂,才是具有强盛生命力的课堂。新课程强调把课堂变成学生探索世界的窗口,学生活中的数学,获得合作的乐趣,生活融入甚至成为课堂教学,课堂教学本身就是生活,经历、体验、探究、感悟,构成了教学目标最为重要的行为动词。
3、重视学生的自主探索和合作学习
在教学中,通过先让学生利用数方格填表格的方法,初步了解给出的平行四边形的面积和长方形的面积是相等的,接着引导学生观察、发现表格中的秘密,猜想出平行四边形的面积等于底乘高,最后学生小组合作通过动手操作把平行四边形转变成长方形,进一步验证了学生的猜想。在这节课中教师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……这样才能迸发出学生创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。
“学习任何知识最佳的途径都是由学生自己去发现,因为这种发现才是最深刻、也最容易掌握其中内在规律性质与联系”。经过学生动手、动脑、交流,把求平行四边形面积这一探索过程充分展示出来。不仅深化了对公式的理解而且渗透了转化和变换的数学思想,培养了学生操作能力和分析概括的能力,发展了学生的空间观念。
4、充分利用教学资源,自制课件,发挥多媒体辅助教学功能。
本节课还充分发挥了计算机辅助教学的功能,直观、形象、动态地展现知识的形成过程,有效地突破教学难点,帮助学生深刻理解新知,建立清晰表象,提高教学效果。
总之,本节课学生亲身经历了探索的过程,在头脑中建构了新的数学模型,使学生体验到成功的喜悦。教学成功的关键在于关注了学生的学习过程,不是让学生机械地重复历史中的“原始创造”,而是让他们根据自己的体验并用自己的思维方式重新去创造出有关的数学知识;不是盲目接受和被动记忆课本或教师传授的知识,而是让学生主动运用已有的知识和经验进行自我探索,自我建构。创设了一个有利于学生生动活泼、主动发展的教育氛围,教师要真正成为教学的组织者、引导者和合作者。
-
我们精彩推荐平行四边形的面积教学反思专题,静候访问专题:平行四边形的面积教学反思