四年级解方程教案(汇总14篇)。
四年级解方程教案 篇1
教学目标:
1.通过分析具体问题中的数量关系,了解到解方程作为运用方程解决实际问题的需要.正确理解和使用乘法分配律和去括号法则解方程.
2.领悟到解方程作为运用方程解决实际问题的组成部分.
3.进一步体会同一方程有多种解决方法及渗透整体化一的数学思想.
4.培养学生热爱数学,独立思考,与合作交流的能力,领悟数学来于实践,服务于实践.教学重点:正确去括号解方程
教学难点:去括号法则和分配律的正确使用.
教学方法:引导发现
教学设计:
一、引入:
(读教材156页引例)
引导学生根据画面内容探讨解决问题的方法.针对学生情况,如有困难教师直接讲解.
学生观看画面:两名同学到商店买饮料的情景.
如果设1听果奶x元,那么可列出方程4(x十0.5)+x=20-3
教师组织学生讨论.
教材“想一想”中的内容:首先鼓励学生通过独立思考,抓住其中的等量关系:买果奶的钱+买可乐的钱=20-3,然后鼓励学生运用自己的方法列方程并解释其中的道理.
①学生研讨并交流各自解决问题的过程.
②学生独立完成“想一想”中的问题(2).
二、出示例题3并引导学生探讨问题的解决方法.
引导学生对自己所列方程的解的.实际意义进行解释.
出示随堂练习题,鼓励学生大胆互评.
①独立完成随堂练习.
③四名同学板演.
③纠正板演中的错误并总结注意事项.
1、自主完成例题
2、小组内交流各自解方程的方法.
3、总结数学思想.
三、出示例题4,教师首先鼓励学生独立探索解法,并互相交流.然后引导学生总结,此方程既可以先去括号求解,也可以视作关于(x-1)的一元一次方程进行求解.(后一种解法不要求所有学生都必须掌握.)
1、自主完成例题
2、小组内交流各自解方程的方法.
3、总结数学思想.
四、出示随堂练习题.
①独立完成练习题.
②同桌互相检查.
出示自编练习题:下面方程的解法对不对?如果不对应怎样改正?
①解方程:2(x+3)-5(1-x)=3(x-1)
②解方程:6(x+8)一6=0
①小组间比赛找错误.
②讨论交流各自看法.
③选代表说出错误的原因,并总结解本节所学方程的注意事项.
五、小结
1、做出本节课小结并交流.
2、说出自己的收获.
给予评价:
引导学生做出本节课小结.
七、板书设计
八、教学后记
四年级解方程教案 篇2
第一次集体备课(初案)
学科
数学
班级
五年级
备课教师
张云
备课组
五年级数学组
课题
第一单元:《方程》第三课时 练习课
课时
第( 3)课时
一、教学目标:
1、通过练习,使学生进一步体会方程的含义。
2、进一步理解等式的性质,能根据等式的性质正确地解方程。
二、教学重难点:能根据等式的性质,正确的解方程及检验。
三、教法、学法(简要式):
本节课教学采用自主探索、合作交流的方法进行组织教学。
四、教学过程(提纲式):
一、基础练习
二、完成第6页的7-12题
三、课堂作业
四、课堂小结
这节课学习的内容是什么?
第二次集体备课(研讨记录)
时间
(2010 )至(2011 )学年度第(2)学期第(1)周
地点
多媒体教室
学科
数学
主持人
陈源文
记录人
张云
备课组
五年级数学组
课题
第一单元:《方程》第三课时 练习课
课时
第( 3 )课时
一、主持人(级组长)发言:
各位老师:大家好,今天我们年级组集中学习,主要内容是讨论一下我们第一次集体备课
(初案)的情况,针对存在的问题,请大家提出宝贵的意见,以帮助我们归纳总结出第
三次的详细教案
二、备课组各位教师说(初案)教学思路:
谢小森老师:在教学过程中,放手让学生自主探索算
法,教师在归纳总结。
林朝飞老师:组织学生去发现计算的方法,让学生体验
学习成功带来的快乐。
陈源文老师:通过学生自主探索,自主交流,归纳总结来组织教学。
吴坤理老师:使学生能在探索算法的过程中,培养比较和分析的能力,发展数学思考。
三、备课组研讨过程(发言要点):
陈源文老师:在教学练习时应从生活中创设情境来激发学生的兴趣。
谢小森老师:可以让学生先根据解决的问题列出算式,然后让学生自主
探索,获得新知,明白算法。
林朝飞老师:在巩固练习时,可以指明让学生说说计算过程。
吴坤理老师:在教学中应注意学生的计算方法和过程。
张云老师:让学生在所设情境中进行学习。同时还注意培养学生提问和解决问题的能力。
四、课题的总体教学思路:
本课教学的关键就是引导学生先独立完成,再让学生说说这里的过程与此前解方程的过程比较,省略了什么,明确以后解方程时,先要在脑子里想好方程两边应同时加上或减去一个什么数,但书写时可以适当省略。再让学生完成后面的练习,逐步掌握简化书写过程,并解出方程。还可以让学生说说解含有小数的方程的体会。通过小组交流的形式,让每个学生都了解自己是否已经掌握了这些方程的解法。
第三次集体备课(特色教案)
学 科
数学
备课组及教师姓名
四年级数学陈源文、谢小森、张云、林朝飞、吴坤理
备课时间
( 2011)年( 2 )月( 20 )日第( 1 )周星期( )
课 题
第一单元:《方程》第三课时 练习课
课 时
共( 1)课时
一、本课在全册或单元中的地位及作用:
本节课是在学生已经学习了方程,学习这部分内容,有利于学生完整地掌握整数方程的计算方法,并以今后进一步学习方程积累经验。以各种形式的练习进行方程学习,再通过进一步的交流,帮助学生掌握方程的基本方法。
二、三维教学目标:
1、知识目标:使学生经历探索方程学习的过程,掌握方程练习方法,能正确进行计算。
2、能力目标:使学生在练习的过程中体会新旧知识的联系,能主动总结、归纳方程的笔算方法,培养类比及分析,概括能力,发展应用意识。
3、情感目标:使学生在主动参与活动的过程中,进一步体验学习成功带来的快乐,激发探索方程的兴趣。
三、教学重难点:
教学重点:能根据等式的性质,正确的解方程及检验。
四、教法、学法:
1、 情境教学促感悟
2、 让学生运用已有的知识经验,根据自己的体验,感悟生活中蕴含着大量的数学信息,激发学生的学习兴趣。
3、自主探索体现主体性在汇报交流中,尊重学生的思维方式,充分发挥学生的主体性地位培养学生的自主探索精神,不断积累积极的数学学习情感和体验。
五、教学过程(分课时):
一、导入新课
上一节课,我们学习了什么?
复习天平保持平衡的规律及等式保持不变的规律。学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。
二、新知学习。
1、解决问题。
出示p57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。
能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。
全班交流。可能有以下四种思路:
(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。
(2)利用加减法的关系:250-100=150。
(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。
(4)直接利用等式不变的规律从两边减去100。
对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。
2、认识、区别方程的解和解方程。
得出方程的解与解方程的含:
像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。
而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。
这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?
方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。
3、练习。(做一做)
齐读题目要求。
怎么判断x=3是不是方程的解?将x=5代入方程之中看左右两边是否相等,写作格式是:方程左边=5x
=53
=15
=方程右边
所以,x=3是方程的解。
用同样的方法检查x=2是不是方程5x=15的解。
二、作业。
独立完成练习十一第4题,强调书写格式。
三、小结。
通过这节课学到了什么?还有什么问题?
七、学情分析与评价反思:
在方程练习中,主要有两个需要注意的问题: 一是认识、区别方程的解和解方程。从而让学生真正掌握正确的练习方法。在比较中得出:像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。,又进一步完善了学生的认知结构,有利于学生合理、灵活地进行计算。
四年级解方程教案 篇3
第一课时 教学内容:教科书第1~2页,例1、例2、试一试、练一练,练习一第1~3题。 教学目标: 1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。 2、通过观察比较,使学生认识到含有未知数的等式是方程,感受等式与方程的联系与区别,体会方程是特殊的等式。 教学重点:理解等式的性质,理解方程的意义。 教学难点:利用等式性质和方程的意义列出方程。 教学准备:多媒体课件 教学过程: 一、情景引入 1、出示天平。 知道这是什么吗?你知道它是按照什么原理制造的吗? 说说你的想法。 如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡的呢? 二、教学新课 1、教学例1。 (1)出示例1图。 你会用等式表示天平两边物体的质量关系吗?把它写出来。 50+50=100 (板书) 说说你是怎样想的? (2)指出等式的左边,等式的右边等概念。 等式有什么特征?(等式的左边和右边结果相等;等式用等号连接) 能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式) 2、教学例2。 (1)出示例2图。 天平往哪一边下垂说明什么?(哪一边物体的质量多) 你能用式子表示天平两边物体的质量关系吗? 学生独立完成填写,集体汇报。 板书:x+50>100 x+50=150 x+50<200 x+x=200 如果让你把这四个式子分类,应分为几类?为什么? 指出:左右两边相等的式子就叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数) 知道像x+50=100,x+x=100这样的等式叫什么吗?(方程) 说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式) (2)讨论:等式与方程有什么关系? 小组讨论。 指出:方程一定是等式,但等式不一定是方程。
方程是特殊的等式。他们的关系可以用集合圈表示。
3、教学“试一试”。 独立完成,完成后汇报方法。 让学生说一说,每题中的方程哪个更简洁一些? 指出:像500÷2=x,20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。 4、完成“练一练。 (1)完成第1题。 独立完成判断后说说想法。 (2)完成第2题。 (3)完成第3题。 交流所列方程,说说你为什么这样列?你是怎么想的? 三、巩固练习 1、完成练习一第1题。 能说说每个线段表示的意思吗?方程怎样列呢? 小组中交流列式。 2、完成练习一第2题。 理解题意,说说数量关系是怎样的? 列出方程并交流。 3、完成练习一第3题。 四、课堂总结 通过学习,你有哪些收获? 板书设计: 方程 50+50=100 x+50>100 x+50=150
等式 方程 x+50<200 x+x=200
四年级解方程教案 篇4
教学内容
苏教版《义务教育课程标准实验教科书数学》五年级(下册)第1、2页,练习一第1~3题。
教学目标
1.使学生在具体的情境中,理解方程的含义,初步认识等式与方程的关系。
2.使学生在观察、描述、分类、抽象、概括的过程中,经历将现实问题抽象成式与方程的过程,体会方程是刻画现实世界的数学模型,发展抽象思维。
3.使学生在积极参与数学活动的过程中,感受探索的乐趣,获得成功的体验,增强学好数学的信心。
教学过程
一、认识相等关系,初步理解等式
1.出示例1天平图(两边没有砝码)。
提问:认识天平吗?天平是用来做什么的?
2.在天平的两边加上砝码。
提问:你看懂了什么?
学生可能想到:一边托盘内放了两个重50克砝码,一边放了一个重100克的砝码,两边一样重。
追问:不看两边托盘内放的东西,你知道两边一样重吗?能用语言描述两边物体的质量关系吗?
学生回答后,提问:怎样用数学式子表示两边物体的质量关系?(板书:50+50=100)
追问:为什么用等号连接?
指出:像这样用等号连接的式子,就是等式,表示相等的关系。
二、认识方程
1.出示例2天平图中的指针部分局部图(第一幅图)。
提问:看到这时的指针位置,你有什么想法?如果用式子来表示,还会选用等号写等式吗?为什么?
2.出示完整的天平图。
提问:你能用语言描述两边物体的质量关系吗?怎样用式子表示?(板书:x+50>100)
追问:x表示什么?
3.依次出示例2第二、三幅天平图。
要求:先用语言描述天平两边物体的质量关系,然后用式子表示。
学生口述,教师板书:x+50=150,x+50<200。
4.出示:2x=200。
提问:根据这个式子,想一想天平两边的物体是怎样的?你能描述出来吗?
在学生描述的基础上,出示教材第1页例2的第四幅天平图。
5.将式子分类,认识方程。
引导:我们来看刚才根据天平图所写的几个式子。在黑板上集中呈现5个式子的卡片:
50+50=100x+50>100x+50=150
x+50<2002x=200
谈话:你能把这些式子按照一定的标准进行分类吗?请大家独立思考,再在小组里先说一说。
学生的分类可能出现下面两种情况:
①将式子按照不同的连接方式(大于号、小于号或等号)分成三类。
引导:按照你的理解,你能找出哪些是等式吗?
学生口答,教师请学生根据他们的发言在黑板上移动式子卡片,将式子分类。
指出:根据大家的意见,我们可以把这些式子分成三类,也可以把这些式子分成两类,一类是用等号连接的式子,都是等式;还有一类是用大于号、小于号连接的,都不是等式。
教师对黑板上的卡片位置作如下调整:
50+50=100x+50>100
x+50=150x+50<200
2x=200
②将式子按照是否含有字母x分成两类。
指出:这里用字母x表示未知数。
让学生在黑板上把另一套式子卡片分类排列,并指导学生按下面的方式排列:
50+50=100是否含有未知数
x+50=150
x+50>100
x+50<200
2x=200
在学生交流了两种分类方法之后,教师引导学生对照黑板上所分类的式子卡片思考:你能把两种分类方法综合起来对这些式子进行分类吗?
学生对黑板上的式子进行调整。教师在学生分类的基础上,标注类别序号。
谈话:同学们通过思考、交流,把这些式子分成了四类。请观察这几类式子,说一说每组式子有什么特征?
学生描述后,教师指出:正如你们所描述的,像第③类式子这样,含有未知数的等式是方程。
6.完成“练一练”第1题。
依次出示前三道式子:6+x=16;36-7=29;60+23>70,学生逐一做出是否是方程的判断,并说明理由。(在学生对“60+23>70”做出判断后,教师将这道式子板书在算式卡片的第②类中)
出示第1题的其他式子,学生判断哪些是方程。接着,让学生判断哪些是等式。结合学生的判断,教师指出:方程中的未知数,既可以用x表示,也可以用y表示,还可以用其他字母表示。
反思:根据刚才的练习,你发现等式与方程有什么关系?学生在小组里交流。
在学生交流的基础上,用课件结合“练一练”第1题进行动态演示:先是将所有的等式画上集合圈,再闪烁显示其中的方程式,将方程式画上集合圈,集合圈中的等式渐渐淡化直至消失,出现文字“等式”与“方程”,如右图:
教师引导学生再结合黑板上对式子进行的分类,理解:方程是一类特殊的等式;等式中,一部分是方程。
7.完成“练一练”第2题。
学生写一些方程,再在小组里交流。
三、进一步理解方程的含义,体会方程思想
1.教学“试一试”。
出示“试一试”(图略)。
学生先用语言表述图中告诉了我们什么,数量之间有怎样的相等关系,再列方程。
2.完成“练一练”第3题。
学生先用语言描述图中的等量关系,再列方程。
四、课堂总结(略)
五、课堂作业
练习一第1~3题。
四年级解方程教案 篇5
一、教材分析
本节是普通高中课程标准实验教科书数学必修1的第三章第一节,是在学生学习函数的基本性质和指、对、幂三种基本初等函数基础上的后续,展现函数图象和性质的应用。
本节重点是通过“二分法”求方程的近似解,使学生体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识。
本课是本章节的第一节课,结合函数图象和性质向学生介绍零点概念及其存在性,为后面“二分法”的学习打下伏笔,也为后来的算法学习作好基础。
二、学情分析
通过初中的学习,学生已经熟练掌握了一次方程、二次方程求根的方法、描点作图法和一次函数、二次函数、反比例函数的图象;通过高中前两章的学习,强化了描点作图法,初步掌握了对勾函数、指数函数、对数函数、幂函数的图象及基本性质,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。但是,学生对函数与方程之间的联系缺乏了解,因此我们有必要点明函数的核心地位。
三、教学目标的确定
1、知识与技能:
(1)能够结合具体方程(如二次方程),说明方程的根、相应函数图象与x轴的交点横坐标以及相应函数零点的关系;
(2)正确理解函数零点存在性定理:了解图象连续不断的意义及作用;知道定理只是函数存在零点的一个充分条件;
(3)能利用函数图象和性质判断某些函数的零点个数;
(4)能顺利将一个方程求解问题转化为一个函数零点问题,写出与方程对应的函数;并会判断存在零点的区间(可使用计算器)。
2、过程与方法:
通过学生活动、讨论与探究,体验函数零点概念的形成过程,引导学生学会用转化与数形结合思想方法研究问题,提高数学知识的综合应用能力。
3、情感态度价值观:
让学生初步体会事物间相互转化以及由特殊到一般的辨证思想,充分体验数学语言的严谨性,数学思想方法的科学性,让学生进一步受到数学思想方法的熏陶,激发学生的学习热情。
之所以这样确定教学目标,一方面是根据教材和课程标准的要求,另方面是想在学法上给学生以指导,使学生的能力得到提高。
四、教学重难点的确定
重点:函数零点的概念、求法和函数零点存在性定理。
难点:函数零点存在性定理的掌握与运用。
依据:在高考中考察函数零点相关问题,函数零点存在性定理为“二分法”的学习奠定基础,也是能否准确掌握本节知识的关键。
四、教学方法的选择
由于学生有一定的基础,是在原有知识上求新,根据学生的实际情况及培养目标,我采用“以问题为中心”的探究式的教学模式,由特殊到一般,激发学生学习兴趣,体现学生的主体地位。所选教学方法主要是引导启发,学生的学习方法是通过活动、讨论、探究,发现并准确归纳出结论。
五、学习方法的选择
在本节教学中我着重突出了教法对学法的引导,采用自主探究的学习法。在教学双边活动的过程中,以学生活动为主,自主探究,合作交流,运用“从特殊到一般,转化,数形结合”的数学思想方法,发现并准确归纳出结论引导学生探寻新知识,层层深入掌握新知识。
六、教学流程
七、教学过程
1、复习式导入
练习:
(1)求方程x2—2x—3=0的根,画出函数y=x2—2x—3的图象;
(2)求方程x2—2x+1=0的根,画出函数y=x2—2x+1的图象;
(3)求方程x2—2x+3=0的根,画出函数y=x2—2x+3的图象。观察方程的根与函数和x轴交点的横坐标之间的关系。
意图:问题比较简单,面向了全体学生,符合学生认知规律,真正让学生思维“动”起来。让学生感知“函数的零点”概念发生的过程和求函数零点的两种方法:方程求根法与图像法。
2、推广到一般
从△>0,△=0,△<0三个角度对一元二次方程ax2+bx+c=0的根和相应的二次函数y=ax2+bx+c与x轴的交点情况进行比对,得到一般性的结论。
意图:让学生感知“特殊到一般”的辩证思想;求零点过程中,了解转化(求零点转化为求方程f(x)=0的根)的数学思想,感受函数与方程的联系。
3、定义与关系
定义:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点。
关系:方程f(x)=0有实数根
函数y=f(x)有零点。
归纳总结:我们求函数的零点有哪些方法?
意图:拉近师生距离,体现课堂中学生的主体地位与师生间的平等关系。融洽的师生关系能真正让学生思维活跃起来,同时继续领会转化思想。
4、探究零点存在性
观察二次函数f(x)=x2—2x—3和对数函数f(x)=lgx的图象中零点两侧函数值的正负情况,探究函数零点存在性。如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有
f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。函数y=f(x)的图象与x轴有交点
意图:通过学生自主探究和师生互动,让学生体会数形结合思想,享受探究成功的愉悦。
5、诠释零点存在性
只要满足上述两个条件,就能判断函数在指定区间内存在零点,若要得到零点的个数,还需结合函数的单调性等性质进行判断。我们还要注意,这只是函数零点存在性的充分条件,它的逆命题就不成立了。
意图:使学生准确理解零点存在性定理。
6、例题讲解与练习
例1求函数f(x)=lnx+2x—6的零点个数。意图:通过例题分析,学会用零点存在性定理确定零点存在区间,并且结合函数性质,判断零点个数的方法。
练习(P88)
作业:习题3、1A组3,复习参考题A组1
四年级解方程教案 篇6
简 易 方 程
目标预设:
1.使学生初步理解方程的意义,知道方程的解、解方程的意义和验算的方法,能正确解方程。
2.培养学生的分析比较能力和再创造意识。
3.培养学生认真审题,自觉检验的良好学习习惯。
过程预设:
一、情境创设
六一儿童节快到了,文峰大世界推出学生用品大展销,这里是选取其中的几件。
商品上标价分别为(字母表示的为商品价格不知道的):
上衣 65元巧克力 y元
钢笔 40元皮鞋60元
书x元 文具盒 20元
如果拿100块钱去买商品,用钱的结果会有哪几种不同的情况?
(三种情况,大于、小于、等于)
如果请你自己购物的话,你准备选择什么
把你的购买情况与用钱结果用式子表示出来。纯茨隳苄炊嗌伲?br>选取生列出的算式:65+40=10065+x<100 y+60 x+y等等
二、观察讨论:把上面的式子分类,你认为可以怎么分?
1.小组讨论,介绍如何分。
2.教师指出:像这些用等号连起来的算式我们都叫它等式。而含有未知数的等式叫方程。师板书。
3.今天我们就来研究方程。(板书课题)
4.提问:这里哪些算式是方程?根据学生的回答师用集合圈圈出方程。
知道了什么是方程,你能写出一些方程来吗?试试看,在随练本上写出一个方程。
5.汇报:说说你写的方程是怎样的?
提问:如65+x是方程吗?为什么?
由此看出:具备方程的两个条件是什么?
师:65+x=100、65+58=123都是等式,一个是方程,一个不是方程,方程和等式之间有什么关系?
可以用一句话或者图来表示吗?
三、方程史话
说起方程,老师这儿还有一个故事呢:我们都知道《九章算术》是我国著名的《算经十书》之一,是十部算经中最重要的一部。《九章算术》共收有246个数学问题,绝大多数内容是与当时的社会生活密切相关的。其中方程术是《九章算术》最高的数学成就,是它在世界上最早提出了方程的概念,并系统地总结了方程的解法,比我们现在所熟知的希腊丢番图方程要早三百多年。
《九章算术》反映出我国古代数学在秦汉时期就已经取得在全世界领先发展的地位,作为一部世界科学名著,它在隋唐时期就已传入朝鲜、日本。现在,它已被译成日、俄、德、法等多种文字在世界上广泛流传。
听了这段话,你有什么感想?
四、解方程
1.师:大家知道这些方程中的未知数的值是多少吗?你是怎么知道的?
生练习求未知数,指名板演。(两题)
师讲解:这是我们学过的求未知数x,当x=?时这个方程两边才相等,所以我们把x=?就叫做是这个方程的解。提问:另一道方程的解是多少?
刚才我们求这个方程的解的过程就是解方程。因此,我们在解方程时写个“解”字。师补充写解。
其实我们以前求未知数x的过程,实际上就是在解方程。
2.选出方程的解,并画上横线。
x+8=30 (x=38 x=22)
x=5是方程( )的解。15x=3 6x=30
12-x=8 (x=4 x=20)
提问:你是怎样找出方程的解的?
3.检验
师:我们在解方程的时候,也可以用这种代进去的方法算一算,如果它的等式结果和右边相等,说明是正确的,这种就是方程的检验方法。
请大家把书翻到80页,看一下方程的检验过程。
需要注意的是检验的格式,自己任意挑选一题进行检验。
五、巩固练习
做个游戏,好吗?
1.分组出五题判断题,写出式子,可以是方程,也可以不是方程的,考考其他组,看看哪个组编的题最好。
2.求出最好这组中的两道方程中的解,并检验。
四年级解方程教案 篇7
教学目的:
1、在解决实际问题的过程中,进一步巩固形如ax+b=c、ax-b=c的方程的解法,同时理解并掌握形如ax÷b=c的方程的解法,会列上述方程解决两步计算的实际问题。
2、提高分析数量关系的能力,培养学生思维的灵活性。
3、在积极参与数学活动的过程中,树立学好数学的信心。
教学重点、难点:
引导学生独立分析问题,找出题目中的等量关系。
教学对策:
在积极参与数学活动的过程中,树立学好数学的信心。
教学准备:
教学光盘
教学过程:
一、复习准备
1、解方程(练习一第6题的第1、3小题)
4x+12=50 2.3x-1.02=0.36
学生独立完成,再指名学生板演并讲评,集体订正。
二、尝试练习
师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。
出示:30x÷2=360
学生独立尝试完成,全班交流。
指名学生说一说,解这个方程是第一步需要做什么?这样做依据了等式的什么性质?
三、巩固练习
1、出示练习一第7题。
(1)分析数量关系
提问:谁来说说三角形的面积公式是怎样的?根据学生回答板书:S=ah÷2。联系这个公式你能找出数量之间的相等关系吗?(生独立思考后在小组内交流)指名口答。你觉得在这些数量关系中,哪一个等量关系适合列方程?根据这个数量关系我们可以列出怎样的方程?板书:1.3x÷2=0.39。
第⑵题生独立思考并列出方程,在小组内说说自己的思考过程后全班交流。板书:3x+18=19.8。
(2)学生独立计算,并检验答案是否正确,全班核对。
小结:在一个实际问题中,可能会有几个不同的等量关系,我们应该选择合适的等量关系来列方程。
2、练习一第8题。
学生读题后可用自己喜欢的方法将与杨树和松树有关的信息分别列表整理(如列表,作标记等)
学生独立解决后再说说数量之间有怎样的数量关系,是根据什么样的数量关系列出的方程,最后核对解方程的过程。(提示学生可从得数的合理性来初步检验)
3、练习一第9题。
学生独立思考,指名分析数量关系,教师结合学生回答画出线段图帮助学生理解题意。
学生独立解方程再集体订正。
4、练习一第10题。
教师简单介绍相关天文知识后,学生独立解答,然后及时交流,教师及时讲评。
5、练习一第11题。
学生读题后教师提问:在本题中出现了两个问题,那么我们在写设句时要注意什么?(提示学生用不同的字母分别表示小亮出生时的身高和体重)
学生独立解决,集体核对。结合学生板演情况进行讲评,进一步规范学生的书写格式。
6、练习一第12题。
提问:你能看懂这张发票上所提供的信息吗?数量间有怎样的等量关系呢
学生独立列方程解答,同桌同学互相检查,再集体订正。
7、练习一第13题。
学生阅读第13题,理解后独立解决问题,再交流。
教师再补充几题,如:98.6、212华氏度相当于多少摄氏度等。
四、全课小结
说一说你这一节课的学习收获及还有什么问题。
五、布置作业
完成配套习题。
四年级解方程教案 篇8
一、教学目标:
1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。
2、会用等式性质解形如x+5=12的简单方程。
3、培养观察、分析概括的能力。
二、课时安排:
1课时
三、教学重点:
能用等式的性质解简单的方程。
四、教学难点:
了解等式的性质。
五、教学过程
(一)导入新课
故事引入:在古代三国的时候,有人送给曹操一头大象,曹操要知道大象的重量,大臣们都不知道怎么办。这时小儿子曹冲却称出了船上石头的重量。你是怎样理解曹冲的方法的?
(板书:大象的体重=石头的重量)
师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。
检查预习。
(二)讲授新课
探究一:学习等式性质
1、师操作:在天平两侧各放一个5克砝码。
提问:你能用一个等式表示天两边关系吗?
提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,
教师总结概括出等式性质。
等式两边都加上同一个数,等式仍然成立。
师操作在刚才的基础上一个一个减砝码。
提问:你能用等式来表示吗?
提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,
教师总结概括出等式性质。
等式两边都减去同一个数,等式仍然成立。
3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。
(三)重点精讲。
探究二:学习解方程
师板书x+2=10问:用天平如何表示?
问:如何用刚才的知识解方程?(两边都减去2)
1、师根据学生回答板书并画出天平图。
2、师在解题示范时要注重“解”和“等于号”的书写要求。
3、交代检验方法。
4、学生试着解方程。
y-7=12 23+x=45
组内交流收获和疑惑。
小组汇报。
教师总结板书:根据等式的性质解方程。
(五)随堂检测
1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。
2、看图列方程,并解方程。
3、解方程。
(1)x – 19 = 2
(2)x - 12.3 = 3.8
4、看图列方程,并解方程。
5、看图列方程,并解方程。
6、看图列方程,并解方程。
板书设计
X+5=7 x-5= 7
解:X+5-5=7-5解:x-5+5=7+5
X=2 x=12
等式的两边同时加上或者减去同一个数,等式仍然成立。
四年级解方程教案 篇9
学习内容:人教版五年级上册P57页
学习目标:
1、通过操作、演示,进一步理解等式的性式,并能用等式的性质解简单的方程,在解方程的过程中,进一步理解方程的解与解方程。
2、会根据等式不变的规律解形如X±a=b的方程,掌握解方程的格式和写法。
3、会检验一个具体的值是不是方程的解,掌握检验的格式。
3、通过创设情境,经历从具体抽象为代数问题的过程,渗透代数化思想,并通过验算,促进良好学习习惯的养成。
4、在观察、猜想、验证等数学活动中,发展学生的数学素养。
教学重点:会解形如X±a=b的方程,并检验。
教学难点:理解形如X±a=b的方程原理,掌握正确的解方程格式及检验方法。
教学过程:
一、激趣复习感悟
(一)导入:秋天是一个瓜果飘香的季节,在这个季节里我们可以吃到各种各样的水果对不对?你知道吗?这些水果除了好吃以外还能做许多有趣的事想不想和老师一起去看看?
(二)观察理解,复习感悟
(1)课件出示天平,一个苹果等于几个草莓?。
你看到了什么?能用语言来描述吗?这个时候天平是怎么样的?能回答这个问题吗?要告诉大家你是怎么知道的?
能说一说为什么要减去两个草莓吗?
(2)课件出示第二个天平,原来一袋海棠果等于几个海棠果的重量。从这个天平的状态中你知道了什么?仔细观察你发现了什么,我们现在怎样做能一下子找到这个问题的答案。为什么要加上两个海棠果呢?
二、自主探究算理
(一)情境引入列出方程
老师这还有一个苹果,你能不能表示出它的重量呢?可以用一个字母X来表示。我用天平称了一下这个苹果结果有了一个新发现。你知道了什么信息?
谁能根据天平称得的重量来列一个方程。X+20=130
(二)合作交流得出方法
X是多少天平两边能相等呢?
看你的意见和其它同学的意见一样吗?一会要和大家说说你是怎么想的,是怎样算出来的?
预设:
(1)130-20=110利用加减法之间的关系
(2)(110)+20=130利用自己的计算经验
(3)利用天平平衡原理(等式的性质):由于数目简单有可能出现不了。
出现不了教师引导:还有没有其它方法。根据让天平两边平衡我们来想一种方法。
(三)小结方法板书课题
以上同学们说的方法都正确。我们这节课就来看看利用天平平衡原理来解方程的这种方法。(板书解方程)因为这种方法是我们今天刚遇到的而且它对我们今后的学习很有帮助,所以我们就来研究一下它。
(四)加深理解规范书写
谁能向大家再来介绍一下这种方法。在天平上我们会操作可是在怎么用算式把它记录下来呢。学生说教师引导学生进行正确书写。
这里大家都有明白吗?有问题吗?老师想问一下这里为什么要减20呢?而且两边都要减?所以在我们刚开始学习解方程时等式两边同时减的数我们一定要写,
请大家注意这里的X=110是一个数值,所以我们不写单位名称。
我们计算的结果对不对呢X=110能不能让方程的.左右两边相等是不是方程的解呢?你认为我们应该怎么做?
指导验算方法。
引导学生观察解题过程并编出儿歌进行记忆:首先要把解字写,两边的计算要同时进行,所有等号要对齐,X一步都不能少,检验的习惯要牢记,这样才会不出错。
这样的书写规范、整齐、清楚就像一件艺术品一样值得人们去欣赏,老师希望同学们今后解题的过程中都能这样去做。能做到吗?
(五)巩固迁移研究方法
(1)练习巩固
X+3.2=4.6X-2=15
先在练习本上试试看,有勇气的同学可以到前边来试试。
有困难的同学可以找老师或找小伙伴帮助。
订证答案让我们一起来看。他完成的怎么样?你对他的解题过程有什么意见要提吗?
(2)利用方法迁移自主学习
再来一起看X-2=15这一道题你是怎么想的,为什么要加上2呢。
(六)巩固练习加深理解
(1)基本练习
老师这还有两个问题要靠大家积极动脑来完成。我们一起来看一看。
请大家根据图意列出方程再解方程。
你是怎样列的算式,怎样解答的,
(2)拓展提高
生活中有许多问题需要我们用解方程的方法来解决,我们一起来看看这几道题。
四、课堂总结深化认识
解方程是一个过程,这个过程就像我们用天平上操作。让我们一起来回想一下,在这个过程中我们都做了什么?
秋天是收获的季节,能和大家在这个收获的季节一起学习老师很高兴,希望大家在这节课上也能收获累累硕果!
四年级解方程教案 篇10
四年级(下册)用字母表示数教学含有字母的式子,学生初步学会了写式子的方法。五年级(下册)方程教学了方程的意义、用等式的性质解一步计算的方程,学生能够列方程解答简单的实际问题。本单元继续教学方程,要解类似于axb=c、axbx=c的方程,并用于解决稍复杂的实际问题。教学内容的编排有以下特点。
第一,把解方程和列方程解决实际问题的教学融为一体,同步进行,这是和以前教材的不同编排。在例1里,解2x-22=64这个方程是新知识,用它解答实际问题也是新知识。在例2里,解方程x+3x=290是新授内容,解决的实际问题也是新授内容。这两道例题,既教学解方程的思路与方法,又教学列方程的相等关系和技巧。这样编排,能较好地体现数学内容和现实生活的联系。一方面分析实际问题里的数量关系,抽象成方程,形成知识与技能的教学内容;另一方面,利用方程解决实际问题,使知识技能的教学具有现实意义,成为数学思考、解决问题、情感态度有效发展的载体。
第二,突出思想方法,通过举一反三培养能力。全单元编排的两道例题、两个练习,涵盖了很宽的知识面。先看解方程。例 1教学ax-b=c这样的方程,练习一里还要解ax+b=c、a+bx=c这些形式的方程。从例题到习题,虽然方程的结构变了,但应用等式的性质解方程是不变的。也就是说,解方程的策略是一致的,知识与方法的具体应用是灵活的。再看列方程。例1把一个数比另一个数的2倍少22作为相等关系,练一练和练习一里陆续出现一个数比另一个数的几倍多几、三角形的面积计算公式以及其他的相等关系。实际问题变了,寻找相等关系是解题的关键步骤始终不变。在例2和练习二里也有类似的安排。无论教学解方程还是列方程,例题讲的是思想方法,以不变的思想方法应对多变的实际情况,有利于形成解决问题的策略,培养创新精神和实践能力。
全单元内容分成三部分,例1和练习一教学一般的分两步解的方程;例2和练习二教学特殊的需两步解的方程;整理与练习回忆、整理、应用全单元的教学内容,反思、评价教学过程和效果。
一、 解稍复杂方程的策略转化成简单的方程。
两道例题里的方程都要分两步解,通过第一步运算,把稍复杂的方程转化成五年级(下册)里教学的简单方程,使新知识植根于已有经验和能力的基础上。化复杂为简单、变未知为已知是人们解决新颖问题的常用策略。这两道例题突出转化的过程,不仅使学生掌握解稍复杂的方程的方法,还让他们充分体验转化思想,发展解决问题的策略。
1. 从各个方程的特点出发,使用不同的转化方法。
解形如axb=c的方程,一般根据等式两边同时加上或减去同一个数,结果仍然是等式的性质化简。例1在列出方程2x-22=64以后,教材里写出了解这个方程的第一步: 2x-22+22=64+22。教学要让学生理解为什么等号的两边都加上22,体会这样做是应用了等式的性质,感受这样做的目的是把稍复杂的方程化简。过去教材里强调把ax看成一个数,是为了应用加、减法中各部分的关系解方程,新教材应用等式的性质解方程,突出转化的思想和方法。
解形如axbx=c的方程,一般应用运算律或相应的知识化简。axbx可以改写成
(ab)x,这已经在四年级(下册)用字母表示数时掌握了,现在只要计算ab,就能实现化简原方程的目的。教学时仍然要让学生理解为什么可以这样改写,以及这样改写的目的。
2. 转化后的简单方程,教法不同。
例1让学生算出2x=?,并求出x的值。这是因为学生具有解2x=86这个方程的能力。教学这样安排,是把转化思想和方法放在突出位置上,促进新旧知识的衔接,有效地使用教学资源。把求得的x的值代入原方程进行检验,在五年级(下册)已经教学。例1提出检验的要求,不仅是培养良好的习惯,还要通过结果是正确的,确认解稍复杂方程的策略和方法是正确的。
例2把原方程化简成4x=290,没有让学生接着解。教材写出x=72.5并继续算出3x=217.5,是因为72.5米和217.5米是实际问题的两个答案。学生以往解答的问题,一般只有一个问题,这道例题有两个问题,需要完整呈现解题过程,在步骤、书写格式上作出示范,便于学生掌握。另外,检验的思路也有拓展。由于题目的特点,不能局限于对解方程的检验,还要联系实际问题里的数量关系,检验算得的陆地面积和水面面积是不是一共290公顷,水面面积是不是陆地面积的3倍。教学时要注意到这一点,既保障解方程是正确的,更保障列出的方程符合实际问题里的数量关系。
3. 加强解方程的练习。
前面曾经说到,例1和例2都有列方程和解方程两个教学内容,列出的方程必须正确地解,才可能得到正确的答案。因此,两个练习的第1题都安排了解方程。练习一在例1解方程的基础上向两个方向扩展,一是引出了a+bx=c、ax-b=c等结构与例题不完全相同的方程,二是把小数及运算纳入了方程。只要体会了例题里解方程的转化思想和转化方法,会进行小数四则计算,就能够适应这两个方面的扩展。要注意的是,小学阶段不要求解形如a-bx=c的方程。因为解这个方程,如果等式的两边都减a,就会出现-bx=c-a,不但等号左边是负数,而且右边c比a小;如果等式的两边都加bx,就出现a=c+bx,这些都是现在难以解决的问题。练习二在例2解方程的基础上带出形如ax-bx=c的方程,解方程涉及的除法计算都控制在三位数除以两位数以及相应的小数除法范围内,学生一般不会有困难。
还有一点要提及,整理与练习中安排小组讨论像3.4x+1.8=8.6、5x-x=24这样的方程各应怎样解,表明教材十分重视引导学生组建认知结构。如果既从两个方程的特点回顾解法的不同,又从策略角度进行整理,对学生是有好处的。练习中出现的方程15x2=60,是为应用三角形面积公式解决实际问题服务的。
二、 列方程解决实际问题的关键找出相等关系。
列方程解决实际问题要找到相等关系,方程是依据相等关系列的。其实,某个实际问题为什么选择列方程的方法解答,或者为什么选择列算式的方法解答,经常是由相等关系决定的。所以,两道例题的教学,都是先找出相等关系。
相等关系是一种数学模型,它把数量关系表达成等式。列算式解决实际问题要分析数量关系,这时的分析着眼于挖掘已知条件之间的联系,沟通已知与未知的联系,通常把条件作为一个方面,问题作为另一个方面,因而用已知数量组成的算式求得问题的答案。实际问题里的相等关系也是数量间的关系,它的最大特点是将已知与未知有机联系起来,通过已知数量和未知数量共同组成的等式,反映实际问题里最主要的数量关系。学生在五年级(下册)初步感受了相等关系,能找出简单问题的相等关系。本册教学寻找较复杂问题的相等关系,就应充分利用学生已有的知识经验。
1. 灵活开展思维活动,找出相等关系。
较复杂的问题之所以复杂,在于它的数量关系错综复杂。例1里大雁塔的高度比小雁塔的2倍少22米,其中既有倍数关系,也有相差关系,是两种关系的复合。例2里已知颐和园水面面积与陆地面积一共290公顷,还已知水面面积大约是陆地面积的3倍,这是两个并列的条件。因此,寻找复杂问题的相等关系,要梳理数量关系,分清主次和先后。
寻找相等关系没有固定的模式照搬、照套,教材从实际问题的结构特点和学生的思维发展水平出发,灵活设计寻找相等关系的教学方法。学生在二年级(下册)已经能解决类似红花有10朵,求红花朵数的2倍少4朵是几朵的问题,对几倍少几这样的数量关系已有初步的理解。因此,例1要求学生找出大雁塔与小雁塔高度之间的相等关系,让他们利用已有的倍数概念和相差概念,通过推理,把比小雁塔的2倍少22米改写成数学式子小雁塔高度2-22,从而得到相等关系。例1为什么提出还可以怎样列方程,这是由于同一个几倍少几的关系,可以写出不同的相等关系式,如小雁塔的高度2-大雁塔的高度=22、小雁塔的高度2=大雁塔的高度+22等。在小组里交流想法是尊重学生的思考,允许学生按自己的想法解题。要注意的是,这里不是要求学生一题多解。要组织学生对各种解法进行比较,体会它们在概念上是一致的,仅是表现形式不同;还要引导学生体会例题里呈现的等量关系,得出答案时的思考比较顺,从而自觉应用这样的等量关系。对于学生中未出现的相等关系,不必提及,以免搞乱思路。
怎样合理利用例2里的两个并列的已知条件?教材选择了线段图。先在表示水面面积的线段上填3x,再在线段图的右边括号里填290,在图上感受水面面积和陆地面积之间的倍数关系和相并关系。然后通过填空写出等量关系,体会水面面积和陆地面积一共290公顷是这个实际问题里的等量关系。
2. 加强写式练习,进一步把握数量关系,为列方程打基础。
含有字母的式子是方程的重要组成部分,根据数量关系列方程时,都要写出含有字母的式子。是否具有用字母表示数的意识,能否顺利写出含有字母的式子,对列方程解答实际问题是至关重要的。因此,教材加强写式的练习。
练习一第2题写出表示梨树棵数的式子3x+15,表示鳊鱼尾数的式子4x-80,都是解答几倍多几、几倍少几实际问题所需要的基本技能。安排写式练习,使学生进一步理解数量关系,养成顺着梨树比桃树的3倍多15棵、鳊鱼比鲫鱼的4倍少80尾这些数量关系的表述进行思考,并转化成数学式子的'习惯,从而选择最适当的相等关系解决实际问题。所以,这道练习题既是写式训练,也是思路引导。
练习二第2题是和倍、差倍问题的专项训练。根据黄花x朵和红花朵数是黄花的3倍,先写出红花有3x朵,用含有字母的式子表示红花的朵数,再用x+3x(或4x)表示两种花一共的朵数,用3x-x(或2x)表示红花比黄花多的朵数,发展联想能力。联想到的式子,正是方程里等号左边的部分,这道题也在写式训练的同时,进行思路引导。
3. 列方程解答新颖的问题,拓展等量关系。
本单元安排两节练习课,分别教学练习一第6~13题、练习二第6~11题。着重解答一些与例题不同的实际问题,找到这些问题的等量关系是教学重点,也是难点,对发展数学思考非常有益。
练习一第7题起拓展等量关系的作用。第(1)小题画出了三角形,学生看到图上的高和底,就能想到三角形的面积计算公式,于是把底高2=三角形的面积作为解题时的等量关系。第(2)小题利用熟悉的括线表示19.8元的意思,形象显示了3枝铅笔的钱+1个文具盒的钱=一共的钱是问题里的等量关系。教材的意图是通过这些题打开思路,让学生体会不同的问题里有不同的等量关系,两个部分数之和往往是可利用的等量关系。这就为继续解答第8、9、12题作了有益的铺垫。至于第13题,把两种温度的换算公式作为等量关系。公式在题中已经揭示,只要在它上面体会已知华氏温度求摄氏温度,列方程解答比较好。反之,已知摄氏温度求华氏温度,依据公式能直接列出算式。
例2和练一练分别是典型的和倍、差倍问题,已知的总数或相差数是等量关系的生长点。练习二第7~11题的题材和例题不同,且各有特点。但是,等量关系的载体仍然是已知的总数与相差数。第7题用线段图配合展示题意,便于学生发现小丽走的米数+小明走的米数=两地相距的米数这一等量关系,并把这个经验迁移到解答后面的习题中去。
四年级解方程教案 篇11
教学目标:
1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。
2、利用探索发现的等式的性质,解决简单的方程。
3、经历了从生活情境的方程模型的'建构过程。
4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。
教学重难点:
重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。
难点:推导等式性质(一)。
教学准备:
一架天平、课件及班班通
教学过程:
一、创设情境,以情激趣
师:同学们,你们玩过跷跷板吗?两只松鼠正玩着跷跷板。突然来了一只大灰熊占了其中一边,结果跷跷板不动了。你们看有什么办法?
学生讨论纷纷。
师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?
二、运用教具,探究新知
(一)等式两边都加上一个数
1、课件出示天平
怎样看出天平平衡?如果天平平衡,则说明什么?
学生回答。
2、出示摆有砝码的天平
操作、演示、讨论、板书:
5=5 5+2=5+2
X=10 X+5=15
观察等式,发现什么规律?
3、探索规律
初次感知:等式两边都加上同一个数,等式仍然成立。
再次感知:举例验证。
(二)等式两边都减去同一个数
观察课件,你又发现了什么?
学生汇报师板书:
X+2=10
X+2-2=10-2
X =8
(三)运用规律,解方程
三、巩固练习
1、完成课本68页“练一练”第2题
先说出数量关系,再列式解答。
2、小组合作完成69页“练一练”第3题。
完成后汇报,集体订正。
四、课堂小结
这节课你学到了什么?学生交流总结。
板书设计: 解方程(一)
X+2=10
解: X+2-2=10-2 ( 方程两边都减去2)
X =8
四年级解方程教案 篇12
教学课题:解方程
教学内容:教材第67—68页例1、2.
教学目标:
1、 知识目标: 结合具体图例,根据等式不变的规律会解方程。
2、 能力目标:掌握解方程的格式和写法。
3、 情感目标:进一步提高学生分析、迁移的能力。 教学重点:掌握解方程的`方法。 教学难点; 掌握解方程的方法。 教学方法:质疑引导。 教学资源:课件、投影仪 教学流程:
作业设计:
1、 必做题:教材第67页做一做第一题
2、 选做题:解方程:X+0.3=1.8
四年级解方程教案 篇13
这节课的内容包括两个方面:一是探索并理解“等式两边同时加上或减去同一个数,所得结果仍然是等式”;二是应用等式的性质解只含有加法和减法运算的简便方程。解方程是学生刚接触的新鲜知识,学生在知识经验的储备上明显不足,因此数学中老师要时刻关注学生的学习状态,引领学生经历将现实、具体的问题加以数学化,引导学生通过操作、观察、分析和比较,由具体到抽象理解等式的性质,并应用等式的性质解方程。在这节课的教学中,让学生理解并掌握等式的性质应是解决一系列问题的关键。
一、让学生在操作中发现
课开始,老师出示天平并在两边各放一个50克的砝码,“你能用式子表示出两边的关系吗?”学生写出 50=50;老师在天平的一边增加一个20克砝码,“这时的关系怎么表示?”学生写出50+20>50,“这时天平的两边不相等,怎样才能让天平两边相等?”学生交流得出在天平的另一边增加同样重量的砝码;“你有什么发现吗?”“自己写几个等式看一看。”通过具体的操作为学生探究问题,寻找结论提供了真实的`情境,辅以启发性、引领性的问题,让学生经历了解决问题的过程,并在问题的解决中发现并获得知识。
二、让学生在发现中操作
引入了等式的性质,其目的就是让学生应用这一性质去解方程,第一次学生解方程,学生心理上难免会有些准备不足,为了帮助学生应用等式的性质解方程,教者先利用天平所显示的数量关系,引导学生发现“在方程的两边都减去100,使方程的左边只剩下x”,通过这样有步骤的练习,帮助学生逐渐掌握解方程的方法。
四年级解方程教案 篇14
教学内容:
教学目标:
1、帮助学生整理式与方程的知识体系,学会用字母表示数,体会用字母表示的简洁性。
2、理解方程的含义,会熟练地解简易方程,初步沟通算式、代数式、具体数量之间的关系。
3、进一步理解基本的数量关系,会根据实际情况选用方程解决问题,提高学生的方程及代数意识。
教学重点:明确字母表示数的意义和作用;会灵活的用方程解答实际问题。
教学难点:找等量关系式,用方程解决实际问题。
教学过程:
一、谈话引入,揭示课题
今天我们来复习“式与方程”。看到这课题,你想到了哪些知识?(用字母表示数,解方程,用方程解决问题)
二、复习用字母表示数
1。用字母表示数。
①1,2,3,4,5,6……可以用哪个数来表示?x
②4,8,12,16,20,24……可以用哪个数来表示?4x
师:4x与x有什么关系呢?4x表示x的4倍
“2x+4”呢?“x÷2—4”呢?
小结:我们要弄懂含有字母式子的含义,含有字母的式子可以表示一个数,而这个数与这个字母有着一定关系。
2。做一做。字母a来表示一个数,你能根据不同关系的表述分别写出另一个数吗?
一个数另一个数
a比a多2的数a+2
比a少2的数a—2
2个a相加是多少?2a
2个a相乘是多少?a2
a的2倍2a
a的一半a÷2
学生独立完成,汇报结果。
2a与a2有什么区别?用字母表示数要注意什么?
三、复习方程与解方程
(1)如果黑板上的三个式子:“4x”“2x+4”“x÷2—4”的结果都是60,那么这些式子就都等于多少呢?
像这样的等式数学上叫做什么?(方程)
什么叫方程?(含有未知数的等式叫方程)
(2)学生独立练习解上述三个方程,完成后校对讲评。
四、复习用方程解决问题
1。根据上述三个方程,编解决问题。
(1)根据4x=60,你想到了什么数学问题?
①小明骑自行车4小时行了60千米,平均每小时行了多少千米?
解:设平均每小时行了x千米。4x=60
②一个正方形的周长是60厘米,它的边长是多少?
解:设它的边长为x厘米。4x=60
师:列方程的依据是什么?
(2)根据2x+4=60,你想到了什么数学问题?
①甲筐有苹果60千克,,乙筐有苹果多少千克?
解:设乙筐有苹果x千克。列出方程是:2x+4=60。
师:你能根据方程,补上相应的条件吗?(甲筐是乙筐的2倍还多4千克)
②如果要列出x÷2—4=60的方程,可以把哪句话改一改?怎么改?
“甲筐是乙筐的2倍还多4千克”改为“甲筐是乙筐的一半还少4千克”
师:刚刚补上的'两个条件,正是在列方程时要用到的关键句,知道什么叫关键句吗?
师:从这句话中可以找到数量关系,列出方程。
2。复习用方程解决问题的一般步骤。
小明和小刚两家相距425米。两人同时从家出发,经过2。5分钟后能在途中相遇。小明每分钟走75米.小刚每分钟走多少米?(用方程解答)
(1)学生独立解答,指明板演,集体校对。
(2)用方程解决问题时要做到哪几步?
一般步骤:①读懂题意;②设未知数;③找出等量关系;④列出方程;⑤解方程:⑥检验得数。
师:在这六步中你们认为哪一步是最重要的?
3。对比质疑突出优化。
(1)陈老师为学校买了8个篮球,12个足球,共用去760元。已知篮球每个32元。足球每个多少元?(用方程解答,方法越多越好)
学生独立解答,集体分析校对。
①8×32+12x=760“篮球的总价+足球的总价=两种球的总价”
②760—12x=8×32;“篮球的总价相等”
③(760—12x)÷8=32;“篮球的单价相等”
④(760—12x)—32=8;“篮球的个数相等”
⑤(760一32×8)÷x=12“足球的个数相等”
师:根据以上五个等量关系列出的方程,你们觉得最容易找到等量关系的是哪一个?
师:根据每个人的理解,能较快地找到等量关系列出方程的都应该是可以的。但如果你所列出的方程计算比较麻烦.就要继续调整,找出其他的等量关系来列方程.像上题通常容易想到的是按“总价相等”来列出方程。
(2)选择合适的方法解决。
①陈老师为学校买8个篮球,每个32元;买了若干个足球。每个42元;买这两种球共付了760元,问足球买了多少个?
②陈老师为学校买了8个篮球。每个32元;12个足球,每个42元。问共要付多少元?
小结:②顺向思考题通常用算术法,
①逆向的,较难的用方程比较简单。
五、课堂小结
今天我们学习了什么内容?你有哪些收获?还有什么疑惑?
-
欲了解四年级解方程教案网的更多内容,可以访问:四年级解方程教案